Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dual-Modality Representation Learning for Molecular Property Prediction (2501.06608v1)

Published 11 Jan 2025 in cs.LG and q-bio.QM

Abstract: Molecular property prediction has attracted substantial attention recently. Accurate prediction of drug properties relies heavily on effective molecular representations. The structures of chemical compounds are commonly represented as graphs or SMILES sequences. Recent advances in learning drug properties commonly employ Graph Neural Networks (GNNs) based on the graph representation. For the SMILES representation, Transformer-based architectures have been adopted by treating each SMILES string as a sequence of tokens. Because each representation has its own advantages and disadvantages, combining both representations in learning drug properties is a promising direction. We propose a method named Dual-Modality Cross-Attention (DMCA) that can effectively combine the strengths of two representations by employing the cross-attention mechanism. DMCA was evaluated across eight datasets including both classification and regression tasks. Results show that our method achieves the best overall performance, highlighting its effectiveness in leveraging the complementary information from both graph and SMILES modalities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com