Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Dynamic Causal Structure Discovery and Causal Effect Estimation (2501.06534v1)

Published 11 Jan 2025 in stat.ML and cs.LG

Abstract: To represent the causal relationships between variables, a directed acyclic graph (DAG) is widely utilized in many areas, such as social sciences, epidemics, and genetics. Many causal structure learning approaches are developed to learn the hidden causal structure utilizing deep-learning approaches. However, these approaches have a hidden assumption that the causal relationship remains unchanged over time, which may not hold in real life. In this paper, we develop a new framework to model the dynamic causal graph where the causal relations are allowed to be time-varying. We incorporate the basis approximation method into the score-based causal discovery approach to capture the dynamic pattern of the causal graphs. Utilizing the autoregressive model structure, we could capture both contemporaneous and time-lagged causal relationships while allowing them to vary with time. We propose an algorithm that could provide both past-time estimates and future-time predictions on the causal graphs, and conduct simulations to demonstrate the usefulness of the proposed method. We also apply the proposed method for the covid-data analysis, and provide causal estimates on how policy restriction's effect changes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube