Material instability and subsequent restabilization from homogenization of periodic elastic lattices (2501.05044v2)
Abstract: Two classes of non-linear elastic materials are derived via two-dimensional homogenization. These materials are equivalent to a periodic grid of axially-deformable and axially-preloaded structural elements, subject to incremental deformations that involve bending, shear, and normal forces. The unit cell of one class is characterized by elements where deformations are lumped within a finite-degrees-of-freedom framework. In contrast, the other class involves smeared deformation, modelled as flexurally deformable rods with sufficiently high axial compliance. Under increasing compressive load, the elasticity tensor of the equivalent material loses positive definiteness and subsequently undergoes an ellipticity loss. Remarkably, in certain conditions, this loss of stability is followed by a subsequent restabilization; that is, the material re-enters the elliptic regime and even the positive definiteness domain and simultaneously, the underlying elastic lattice returns to a stable state. This effect is closely related to the axial compliance of the elements. Our results: (i.) demonstrate new possibilities for exploiting structural elements within the elastic range, characterized by a finite number of degrees of freedom, to create architected materials with tuneable instabilities, (ii.) introduce reconfigurable materials characterized by 'islands' of stability or instability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.