Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Framework for Integrating Machine Learning Methods for Path-Aware Source Routing (2501.04624v1)

Published 8 Jan 2025 in cs.NI

Abstract: Since the advent of software-defined networking (SDN), Traffic Engineering (TE) has been highlighted as one of the key applications that can be achieved through software-controlled protocols (e.g. PCEP and MPLS). Being one of the most complex challenges in networking, TE problems involve difficult decisions such as allocating flows, either via splitting them among multiple paths or by using a reservation system, to minimize congestion. However, creating an optimized solution is cumbersome and difficult as traffic patterns vary and change with network scale, capacity, and demand. AI methods can help alleviate this by finding optimized TE solutions for the best network performance. SDN-based TE tools such as Teal, Hecate and more, use classification techniques or deep reinforcement learning to find optimal network TE solutions that are demonstrated in simulation. Routing control conducted via source routing tools, e.g., PolKA, can help dynamically divert network flows. In this paper, we propose a novel framework that leverages Hecate to practically demonstrate TE on a real network, collaborating with PolKA, a source routing tool. With real-time traffic statistics, Hecate uses this data to compute optimal paths that are then communicated to PolKA to allocate flows. Several contributions are made to show a practical implementation of how this framework is tested using an emulated ecosystem mimicking a real P4 testbed scenario. This work proves valuable for truly engineered self-driving networks helping translate theory to practice.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube