Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Exploring Iterative Manifold Constraint for Zero-shot Image Editing (2501.03631v2)

Published 7 Jan 2025 in cs.CV

Abstract: Editability and fidelity are two essential demands for text-driven image editing, which expects that the editing area should align with the target prompt and the rest remain unchanged separately. The current cutting-edge editing methods usually obey an "inversion-then-editing" pipeline, where the input image is inverted to an approximate Gaussian noise ${z}T$, based on which a sampling process is conducted using the target prompt. Nevertheless, we argue that it is not a good choice to use a near-Gaussian noise as a pivot for further editing since it would bring plentiful fidelity errors. We verify this by a pilot analysis, discovering that intermediate-inverted latents can achieve a better trade-off between editability and fidelity than the fully-inverted ${z}_T$. Based on this, we propose a novel zero-shot editing paradigm dubbed ZZEdit, which first locates a qualified intermediate-inverted latent marked as ${z}_p$ as a better editing pivot, which is sufficient-for-editing while structure-preserving. Then, a ZigZag process is designed to execute denoising and inversion alternately, which progressively inject target guidance to ${z}_p$ while preserving the structure information of $p$ step. Afterwards, to achieve the same step number of inversion and denoising, we execute a pure sampling process under the target prompt. Essentially, our ZZEdit performs iterative manifold constraint between the manifold of $M{p}$ and $M_{p-1}$, leading to fewer fidelity errors. Extensive experiments highlight the effectiveness of ZZEdit in diverse image editing scenarios compared with the "inversion-then-editing" pipeline.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube