Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Soft symmetries of topological orders (2501.03314v3)

Published 6 Jan 2025 in cond-mat.str-el, hep-th, quant-ph, and math.QA

Abstract: (2+1)D topological orders possess emergent symmetries given by a group $\text{Aut}(\mathcal{C})$, which consists of the braided tensor autoequivalences of the modular tensor category $\mathcal{C}$ that describes the anyons. In this paper we discuss cases where $\text{Aut}(\mathcal{C})$ has elements that neither permute anyons nor are associated to any symmetry fractionalization but are still non-trivial, which we refer to as soft symmetries. We point out that one can construct topological defects corresponding to such exotic symmetry actions by decorating with a certain class of gauged SPT states that cannot be distinguished by their torus partition function. This gives a physical interpretation to work by Davydov on soft braided tensor autoequivalences. This has a number of important implications for the classification of gapped boundaries, non-invertible spontaneous symmetry breaking, and the general classification of symmetry-enriched topological phases of matter. We also demonstrate analogous phenomena in higher dimensions, such as (3+1)D gauge theory with gauge group given by the quaternion group $Q_8$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com