Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sensorformer: Cross-patch attention with global-patch compression is effective for high-dimensional multivariate time series forecasting (2501.03284v1)

Published 6 Jan 2025 in cs.LG

Abstract: Among the existing Transformer-based multivariate time series forecasting methods, iTransformer, which treats each variable sequence as a token and only explicitly extracts cross-variable dependencies, and PatchTST, which adopts a channel-independent strategy and only explicitly extracts cross-time dependencies, both significantly outperform most Channel-Dependent Transformer that simultaneously extract cross-time and cross-variable dependencies. This indicates that existing Transformer-based multivariate time series forecasting methods still struggle to effectively fuse these two types of information. We attribute this issue to the dynamic time lags in the causal relationships between different variables. Therefore, we propose a new multivariate time series forecasting Transformer, Sensorformer, which first compresses the global patch information and then simultaneously extracts cross-variable and cross-time dependencies from the compressed representations. Sensorformer can effectively capture the correct inter-variable correlations and causal relationships, even in the presence of dynamic causal lags between variables, while also reducing the computational complexity of pure cross-patch self-attention from $O(D2 \cdot Patch_num2 \cdot d_model)$ to $O(D2 \cdot Patch_num \cdot d_model)$. Extensive comparative and ablation experiments on 9 mainstream real-world multivariate time series forecasting datasets demonstrate the superiority of Sensorformer. The implementation of Sensorformer, following the style of the Time-series-library and scripts for reproducing the main results, is publicly available at https://github.com/BigYellowTiger/Sensorformer

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com