Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantitative Gait Analysis from Single RGB Videos Using a Dual-Input Transformer-Based Network (2501.01689v1)

Published 3 Jan 2025 in cs.CV

Abstract: Gait and movement analysis have become a well-established clinical tool for diagnosing health conditions, monitoring disease progression for a wide spectrum of diseases, and to implement and assess treatment, surgery and or rehabilitation interventions. However, quantitative motion assessment remains limited to costly motion capture systems and specialized personnel, restricting its accessibility and broader application. Recent advancements in deep neural networks have enabled quantitative movement analysis using single-camera videos, offering an accessible alternative to conventional motion capture systems. In this paper, we present an efficient approach for clinical gait analysis through a dual-pattern input convolutional Transformer network. The proposed system leverages a dual-input Transformer model to estimate essential gait parameters from single RGB videos captured by a single-view camera. The system demonstrates high accuracy in estimating critical metrics such as the gait deviation index (GDI), knee flexion angle, step length, and walking cadence, validated on a dataset of individuals with movement disorders. Notably, our approach surpasses state-of-the-art methods in various scenarios, using fewer resources and proving highly suitable for clinical application, particularly in resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube