Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Everywhere Attack: Attacking Locally and Globally to Boost Targeted Transferability (2501.00707v1)

Published 1 Jan 2025 in cs.CV, cs.AI, and cs.CR

Abstract: Adversarial examples' (AE) transferability refers to the phenomenon that AEs crafted with one surrogate model can also fool other models. Notwithstanding remarkable progress in untargeted transferability, its targeted counterpart remains challenging. This paper proposes an everywhere scheme to boost targeted transferability. Our idea is to attack a victim image both globally and locally. We aim to optimize 'an army of targets' in every local image region instead of the previous works that optimize a high-confidence target in the image. Specifically, we split a victim image into non-overlap blocks and jointly mount a targeted attack on each block. Such a strategy mitigates transfer failures caused by attention inconsistency between surrogate and victim models and thus results in stronger transferability. Our approach is method-agnostic, which means it can be easily combined with existing transferable attacks for even higher transferability. Extensive experiments on ImageNet demonstrate that the proposed approach universally improves the state-of-the-art targeted attacks by a clear margin, e.g., the transferability of the widely adopted Logit attack can be improved by 28.8%-300%.We also evaluate the crafted AEs on a real-world platform: Google Cloud Vision. Results further support the superiority of the proposed method.

Summary

We haven't generated a summary for this paper yet.