Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 75 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Multi-agent reinforcement learning in the all-or-nothing public goods game on networks (2412.20116v1)

Published 28 Dec 2024 in cs.GT and physics.soc-ph

Abstract: We study interpersonal trust by means of the all-or-nothing public goods game between agents on a network. The agents are endowed with the simple yet adaptive learning rule, exponential moving average, by which they estimate the behavior of their neighbors in the network. Theoretically we show that in the long-time limit this multi-agent reinforcement learning process always eventually results in indefinite contribution to the public good or indefinite defection (no agent contributing to the public good). However, by simulation of the pre-limit behavior, we see that on complex network structures there may be mixed states in which the process seems to stabilize before actual convergence to states in which agent beliefs and actions are all the same. In these metastable states the local network characteristics can determine whether agents have high or low trust in their neighbors. More generally it is found that more dense networks result in lower rates of contribution to the public good. This has implications for how one can spread global contribution toward a public good by enabling smaller local interactions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube