Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Framework for Context-Aware IoT Management and State-of-the-Art IoT Traffic Anomaly Detection (2412.19830v1)

Published 19 Dec 2024 in cs.NI and cs.AI

Abstract: The rapid expansion of Internet of Things (IoT) ecosystems has introduced growing complexities in device management and network security. To address these challenges, we present a unified framework that combines context-driven LLMs for IoT administrative tasks with a fine-tuned anomaly detection module for network traffic analysis. The framework streamlines administrative processes such as device management, troubleshooting, and security enforcement by harnessing contextual knowledge from IoT manuals and operational data. The anomaly detection model achieves state-of-the-art performance in identifying irregularities and threats within IoT traffic, leveraging fine-tuning to deliver exceptional accuracy. Evaluations demonstrate that incorporating relevant contextual information significantly enhances the precision and reliability of LLM-based responses for diverse IoT administrative tasks. Additionally, resource usage metrics such as execution time, memory consumption, and response efficiency demonstrate the framework's scalability and suitability for real-world IoT deployments.

Summary

We haven't generated a summary for this paper yet.