On the numerical solution of Lasserre relaxations of unconstrained binary quadratic optimization problem (2412.19776v1)
Abstract: The aim of this paper is to solve linear semidefinite programs arising from higher-order Lasserre relaxations of unconstrained binary quadratic optimization problems. For this we use an interior point method with a preconditioned conjugate gradient method solving the linear systems. The preconditioner utilizes the low-rank structure of the solution of the relaxations. In order to fully exploit this, we need to re-write the moment relaxations. To treat the arising linear equality constraints we use an $\ell_1$-penalty approach within the interior-point solver. The efficiency of this approach is demonstrated by numerical experiments with the MAXCUT and other randomly generated problems and a comparison with a state-of-the-art semidefinite solver and the ADMM method. We further propose a hybrid ADMM-interior-point method that proves to be efficient for certain problem classes. As a by-product, we observe that the second-order relaxation is often high enough to deliver a globally optimal solution of the original problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.