Optimal control for a class of linear transport-dominated systems via the shifted proper orthogonal decomposition (2412.18950v1)
Abstract: Solving optimal control problems for transport-dominated partial differential equations (PDEs) can become computationally expensive, especially when dealing with high-dimensional systems. To overcome this challenge, we focus on developing and deriving reduced-order models that can replace the full PDE system in solving the optimal control problem. Specifically, we explore the use of the shifted proper orthogonal decomposition (POD) as a reduced-order model, which is particularly effective for capturing high-fidelity, low-dimensional representations of transport-dominated phenomena. Furthermore, we propose two distinct frameworks for addressing these problems: one where the reduced-order model is constructed first, followed by optimization of the reduced system, and another where the original PDE system is optimized first, with the reduced-order model subsequently applied to the optimality system. We consider a 1D linear advection equation problem and compare the computational performance of the shifted POD method against the conventional methods like the standard POD when the reduced-order models are used as surrogates within a backtracking line search.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.