Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Entropic adapted Wasserstein distance on Gaussians (2412.18794v1)

Published 25 Dec 2024 in math.OC and math.PR

Abstract: The adapted Wasserstein distance is a metric for quantifying distributional uncertainty and assessing the sensitivity of stochastic optimization problems on time series data. A computationally efficient alternative to it, is provided by the entropically regularized adapted Wasserstein distance. Suffering from similar shortcomings as classical optimal transport, there are only few explicitly known solutions to those distances. Recently, Gunasingam--Wong provided a closed-form representation of the adapted Wasserstein distance between real-valued stochastic processes with Gaussian laws. In this paper, we extend their work in two directions, by considering multidimensional ($\mathbb{R}d$-valued) stochastic processes with Gaussian laws and including the entropic regularization. In both settings, we provide closed-form solutions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com