Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Understanding Artificial Neural Network's Behavior from Neuron Activation Perspective (2412.18073v1)

Published 24 Dec 2024 in cs.AI

Abstract: This paper explores the intricate behavior of deep neural networks (DNNs) through the lens of neuron activation dynamics. We propose a probabilistic framework that can analyze models' neuron activation patterns as a stochastic process, uncovering theoretical insights into neural scaling laws, such as over-parameterization and the power-law decay of loss with respect to dataset size. By deriving key mathematical relationships, we present that the number of activated neurons increases in the form of $N(1-(\frac{bN}{D+bN})b)$, and the neuron activation should follows power-law distribution. Based on these two mathematical results, we demonstrate how DNNs maintain generalization capabilities even under over-parameterization, and we elucidate the phase transition phenomenon observed in loss curves as dataset size plotted in log-axis (i.e. the data magnitude increases linearly). Moreover, by combining the above two phenomenons and the power-law distribution of neuron activation, we derived the power-law decay of neural network's loss function as the data size scale increases. Furthermore, our analysis bridges the gap between empirical observations and theoretical underpinnings, offering experimentally testable predictions regarding parameter efficiency and model compressibility. These findings provide a foundation for understanding neural network scaling and present new directions for optimizing DNN performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube