From KAN to GR-KAN: Advancing Speech Enhancement with KAN-Based Methodology (2412.17778v2)
Abstract: Deep neural network (DNN)-based speech enhancement (SE) usually uses conventional activation functions, which lack the expressiveness to capture complex multiscale structures needed for high-fidelity SE. Group-Rational KAN (GR-KAN), a variant of Kolmogorov-Arnold Networks (KAN), retains KAN's expressiveness while improving scalability on complex tasks. We adapt GR-KAN to existing DNN-based SE by replacing dense layers with GR-KAN layers in the time-frequency (T-F) domain MP-SENet and adapting GR-KAN's activations into the 1D CNN layers in the time-domain Demucs. Results on Voicebank-DEMAND show that GR-KAN requires up to 4x fewer parameters while improving PESQ by up to 0.1. In contrast, KAN, facing scalability issues, outperforms MLP on a small-scale signal modeling task but fails to improve MP-SENet. We demonstrate the first successful use of KAN-based methods for consistent improvement in both time- and SoTA TF-domain SE, establishing GR-KAN as a promising alternative for SE.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.