Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deconfined classical criticality in the anisotropic quantum spin-$\frac{1}{2}$ XY model on the square lattice (2412.17605v2)

Published 23 Dec 2024 in cond-mat.str-el

Abstract: The anisotropic quantum spin-1/2 XY model on a linear chain was solved by Lieb, Schultz, and Mattis in 1961 and shown to display a continuous quantum phase transition at the O(2) symmetric point separating two gapped phases with competing Ising long-range order. For the square lattice, the following is known. The two competing Ising ordered phases extend to finite temperatures, up to a boundary where a transition to the paramagnetic phase occurs, and meet at the O(2) symmetric critical line along the temperature axis that ends at a tricritical point at the Berezinskii-Kosterlitz-Thouless transition temperature where the two competing phases meet the paramagnetic phase. We show that the first-order zero-temperature (quantum) phase transition that separates the competing phases as a function of the anisotropy parameter is smoothed by thermal fluctuations into deconfined classical criticality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube