CiteBART: Learning to Generate Citations for Local Citation Recommendation (2412.17534v2)
Abstract: Local citation recommendation (LCR) suggests a set of papers for a citation placeholder within a given context. The task has evolved as generative approaches have become more promising than the traditional pre-fetch and re-rank-based state-of-the-art approaches. This paper introduces citation-specific pre-training within an encoder-decoder architecture, where author-date citation tokens are masked to learn to reconstruct them to fulfill LCR. There are two variants for this pre-training. In the local context-only base scheme (CiteBART-Base), the citation token in a local context is masked to learn to predict the citation. The global version (CiteBART-Global) extends the local context with the citing paper's title and abstract to enrich the learning signal. CiteBART-Global achieves state-of-the-art performance on LCR benchmarks except for the FullTextPeerRead dataset, which is quite small to see the advantage of generative pre-training. The effect is significant in the larger benchmarks, e.g., Refseer and ArXiv., with the Refseer benchmark-trained model emerging as the best-performing model. We perform comprehensive experiments, including an ablation study, a qualitative analysis, and a taxonomy of hallucinations with detailed statistics. Our analyses confirm that CiteBART-Global has a cross-dataset generalization capability; the macro hallucination rate (MaHR) at the top-3 predictions is 4\%, and when the ground-truth is in the top-k prediction list, the hallucination tendency in the other predictions drops significantly.