Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Buff forms and invariant curves of near-parabolic maps (2412.17125v1)

Published 22 Dec 2024 in math.DS

Abstract: We introduce a general framework to study the local dynamics of near-parabolic maps using the meromorphic $1$-form introduced by X.~Buff. As a sample application of this setup, we prove the following tameness result on invariant curves of near-parabolic maps: Let $g(z)=\lambda z+O(z2)$ have a non-degenerate parabolic fixed point at $0$ with multiplier $\lambda$ a primitive $q$th root of unity, and let $\gamma: \, ]-\infty,0] \to {\mathbb D}(0,r)$ be a $g{\circ q}$-invariant curve landing at $0$ in the sense that $g{\circ q}(\gamma(t))=\gamma(t+1)$ and $\lim_{t \to -\infty} \gamma(t)=0$. Take a sequence $g_n(z)=\lambda_n z+O(z2)$ with $|\lambda_n|\neq 1$ such that $g_n \to g$ uniformly on ${\mathbb D}(0,r)$ and suppose each $g_n$ admits a $g_n{\circ q}$-invariant curve $\gamma_n: \, ]-\infty,0] \to {\mathbb C}$ such that $\gamma_n \to \gamma$ uniformly on the fundamental segment $[-1,0]$. If $\lambda_nq \to 1$ non-tangentially, then $\gamma_n$ lands at a repelling periodic point near $0$, and $\gamma_n \to \gamma$ uniformly on $]-\infty,0]$. In the special case of polynomial maps, this proves Hausdorff continuity of external rays of a given periodic angle when the associated multipliers approach a root of unity non-tangentially.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com