Asymptotic formulae for Eulerian series (1709.08550v1)
Abstract: Let $(a;q){\infty}$ be the $q$-Pochhammer symbol and $\mathrm{li}_2(x)$ be the dilogarithm function. Let $\prod{\alpha,\beta,\gamma}$ be a finite product with every triple $(\alpha,\beta,\gamma)\in(\mathbb{R}{>0})3$ and $S{\alpha\beta\gamma}\in\mathbb{R}$. Also let the triple $(A,B,v)\in\left(\mathbb{R}{>0}\times\mathbb{R}2\right)\cup\left({0}2\times\mathbb{R}{>0}\right)\cup\left({0}\times\mathbb{R}{<0}\times\mathbb{R}\right)$. In this work, we let $z=ev$, denote by $H{-1}(u)=vu-Au2+\sum_{\alpha}\mathrm{li}_2(e{-\alpha u})\sum_{\beta,\gamma} \beta{-1}S_{\alpha\beta\gamma}$ and consider the Eulerien series [\mathcal{H}(z;q)=\sum_{m=0}{\infty}\frac{q{Am2+Bm}z{m}}{\prod\limits_{\alpha,\beta,\gamma}(q{\alpha m+\gamma};q{\beta}){\infty}{S{\alpha\beta\gamma}}}.] We prove that if there exist an $\varepsilon>0$ such that $H_{-1}(u)$ is an increasing function on $[0,\varepsilon)$, then as $q\rightarrow 1-$, [\mathcal{H}(z;q)=\left(1+o\left(|\log q|p\right)\right)\int\limits_{0}{\infty}\frac{q{Ax2+Bx}z{x}}{\prod\limits_{\alpha,\beta,\gamma}(q{\alpha x+\gamma};q{\beta}){\infty}{S{\alpha\beta\gamma}}}\,dx] holds for each $p\ge 0$. We also obtain full asymptotic expansions for $\mathcal{H}(z;q)$ which satisfy above condition as $q\rightarrow 1{-}$. The complete asymptotic expansions for related basic hypergeometric series could be derived as special cases.