Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Towards Adversarial Robustness of Model-Level Mixture-of-Experts Architectures for Semantic Segmentation (2412.11608v1)

Published 16 Dec 2024 in cs.CV and cs.LG

Abstract: Vulnerability to adversarial attacks is a well-known deficiency of deep neural networks. Larger networks are generally more robust, and ensembling is one method to increase adversarial robustness: each model's weaknesses are compensated by the strengths of others. While an ensemble uses a deterministic rule to combine model outputs, a mixture of experts (MoE) includes an additional learnable gating component that predicts weights for the outputs of the expert models, thus determining their contributions to the final prediction. MoEs have been shown to outperform ensembles on specific tasks, yet their susceptibility to adversarial attacks has not been studied yet. In this work, we evaluate the adversarial vulnerability of MoEs for semantic segmentation of urban and highway traffic scenes. We show that MoEs are, in most cases, more robust to per-instance and universal white-box adversarial attacks and can better withstand transfer attacks. Our code is available at \url{https://github.com/KASTEL-MobilityLab/mixtures-of-experts/}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube