Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlocal double phase Neumann and Robin problem with variable $s(\cdot,\cdot)-$order (2412.11607v1)

Published 16 Dec 2024 in math.AP

Abstract: In this paper, we develop some properties of the $a_{x,y}(\cdot)$-Neumann derivative for the nonlocal $s(\cdot,\cdot)$-order operator in fractional Musielak-Sobolev spaces with variable $s(\cdot,\cdot)-$order. Therefore we prove the basic proprieties of the correspondent function spaces. In the second part of this paper, by means of Ekeland's variational principal and direct variational approach, we prove the existence of weak solutions to the following double phase Neumann and Robin problem with variable $s(\cdot,\cdot)-$order: $$\left{\begin{array} (-\Delta){s_1(x,\cdot)}{a1{(x,\cdot)}} u+(-\Delta){s_2(x,\cdot)}{a2{(x,\cdot)}} u +\widehat{a}1_x(|u|)u+\widehat{a}2_x(|u|)u &= \lambda f(x,u) \quad {\rm in\ } \Omega, \ \mathcal{N}{s_1(x,\cdot)}{a1(x,\cdot)}u+\mathcal{N}{s_2(x,\cdot)}{a2(x,\cdot)}u+\beta(x)\left( \widehat{a}1_x(|u|)u+\widehat{a}2_x(|u|)u \right) &= 0 \quad {\rm in\ } \mathbb{R}N\setminus \Omega, \end{array} \right. $$ where $(-\Delta){s_i(x,\cdot)}{ai{(x,\cdot)}}$ and $\mathcal{N}{s_i(x,\cdot)}_{ai(x,\cdot)}$ denote the variable $s_i(\cdot,\cdot)$-order fractional Laplace operator and the nonlocal normal $a_i(\cdot,\cdot)$-derivative of $s_i(\cdot,\cdot)$-order, respectively.

Summary

We haven't generated a summary for this paper yet.