Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable order nonlocal Choquard problem with variable exponents (1907.02837v1)

Published 5 Jul 2019 in math.AP

Abstract: In this article, we study the existence/multiplicity results for the following variable order nonlocal Choquard problem with variable exponents (-\Delta){p(\cdot)}{s(\cdot)}u(x)&=\lambda|u(x)|{\alpha(x)-2}u(x)+ \left(\DD\int\Omega\frac{F(y,u(y))}{|x-y|{\mu(x,y)}}dy\right)f(x,u(x)), x\in \Omega, u(x)&=0, x\in \mathbb RN\setminus\Omega, where $\Omega\subset\mathbb RN$ is a smooth and bounded domain, $N\geq 2$, $p,s,\mu$ and $\alpha$ are continuous functions on $\mathbb RN\times\mathbb RN$ and $f(x,t)$ is Carath\'edory function. Under suitable assumption on $s,p,\mu,\alpha$ and $f(x,t)$, first we study the analogous Hardy-Sobolev-Littlewood-type result for variable exponents suitable for the fractional Sobolev space with variable order and variable exponents. Then we give the existence/multiplicity results for the above equation.

Summary

We haven't generated a summary for this paper yet.