Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypocoercivity meets lifts (2412.10890v2)

Published 14 Dec 2024 in math.PR, math.AP, and math.FA

Abstract: We unify the variational hypocoercivity framework established by D. Albritton, S. Armstrong, J.-C. Mourrat, and M. Novack, with the notion of second-order lifts of reversible diffusion processes, recently introduced by A. Eberle and F. L\"orler. We give an abstract, yet fully constructive, presentation of the theory, so that it can be applied to a large class of linear kinetic equations. As this hypocoercivity technique does not twist the reference norm, we can recover accurate and sharp convergence rates in various models. Among those, adaptive Langevin dynamics (ALD) is discussed in full detail and we show that for near-quadratic potentials, with suitable choices of parameters, it is a near-optimal second-order lift of the overdamped Langevin dynamics. As a further consequence, we observe that the Generalised Langevin Equation (GLE) is a also a second-order lift, as the standard (kinetic) Langevin dynamics are, of the overdamped Langevin dynamics. Then, convergence of (GLE) cannot exceed ballistic speed, i.e. the square root of the rate of the overdamped regime. We illustrate this phenomenon with explicit computations in a benchmark Gaussian case.

Summary

We haven't generated a summary for this paper yet.