Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speeding up quantum Markov processes through lifting (2505.12187v1)

Published 18 May 2025 in math.PR, math.FA, and quant-ph

Abstract: We generalize the concept of non-reversible lifts for reversible diffusion processes initiated by Eberle and Lorler (2024) to quantum Markov dynamics. The lifting operation, which naturally results in hypocoercive processes, can be formally interpreted as, though not restricted to, the reverse of the overdamped limit. We prove that the $L2$ convergence rate of the lifted process is bounded above by the square root of the spectral gap of its overdamped dynamics, indicating that the lifting approach can at most achieve a transition from diffusive to ballistic mixing speeds. Further, using the variational hypocoercivity framework based on space-time Poincare inequalities, we derive a lower bound for the convergence rate of the lifted dynamics. These findings not only offer quantitative convergence guarantees for hypocoercive quantum Markov processes but also characterize the potential and limitations of accelerating the convergence through lifting. In addition, we develop an abstract lifting framework in the Hilbert space setting applicable to any symmetric contraction $C_0$-semigroup, thereby unifying the treatment of classical and quantum dynamics. As applications, we construct optimal lifts for various detailed balanced classical and quantum processes, including the symmetric random walk on a chain, the depolarizing semigroup, Schur multipliers, and quantum Markov semigroups on group von Neumann algebras.

Summary

We haven't generated a summary for this paper yet.