Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using a Multiple-input Residual Neural Network (2412.10656v1)

Published 14 Dec 2024 in physics.ao-ph and cs.LG

Abstract: Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and for parameterizing eddy effects in ocean climate models. Three decades of satellite altimetry observations allow a global assessment of sea surface information. However, the subsurface EKE with spatial filter has not been systematically studied due to the sparseness of subsurface observational data. The subsurface EKE can be inferred both theoretically and numerically from sea surface observations but is limited by the issue of decreasing correlation with sea surface variables as depth increases. In this work, inspired by the Taylor-series expansion of subsurface EKE, a multiple-input neural network approach is proposed to reconstruct the subsurface monthly mean EKE from sea surface variables and subsurface climatological variables (e.g., horizontal filtered velocity gradients). Four neural networks are trained on a high-resolution global ocean reanalysis dataset, namely, surface-input fully connected neural network model (FCNN), surface-input Residual neural network model (ResNet), multiple-input fully connected neural network model (MI-FCNN), and multiple-input residual neural network model (MI-ResNet). The proposed MI-FCNN and MI-ResNet models integrate the surface input variables and the vertical profiles of subsurface variables. The MI-ResNet model outperforms the FCNN, ResNet, and MI-FCNN models, and traditional physics-based models in both regional and global reconstruction of subsurface EKE in the upper 2000 m. In addition, the MI-ResNet model performs well for both regional and global observational data based on transfer learning. These findings reveal the potential of the MI-ResNet model for efficient and accurate reconstruction of subsurface oceanic variables.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.