Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spectral Properties of Positive Definite Matrices over Symmetrized Tropical Algebras and Valued Ordered fields (2412.10602v2)

Published 13 Dec 2024 in math.RA, cs.NA, math.CO, math.NA, and math.SP

Abstract: We investigate the properties of positive definite and positive semi-definite symmetric matrices within the framework of symmetrized tropical algebra, an extension of tropical algebra adapted to ordered valued fields. We focus on the eigenvalues and eigenvectors of these matrices. We prove that the eigenvalues of a positive (semi)-definite matrix in the tropical symmetrized setting coincide with its diagonal entries. Then, we show that the images by the valuation of the eigenvalues of a positive definite matrix over a valued nonarchimedean ordered field coincide with the eigenvalues of an associated matrix in the symmetrized tropical algebra. Moreover, under a genericity condition, we characterize the images of the eigenvectors under the map keeping track both of the nonarchimedean valuation and sign, showing that they coincide with tropical eigenvectors in the symmetrized algebra. These results offer new insights into the spectral theory of matrices over tropical semirings, and provide combinatorial formul\ae\ for log-limits of eigenvalues and eigenvectors of parametric families of real positive definite matrices.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube