Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion (2412.10437v2)

Published 11 Dec 2024 in cs.CV, cs.GR, and cs.LG

Abstract: In this work, we introduce SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without relying on text-based discrete LLMs or prolonged Score Distillation Sampling (SDS) optimization. The core idea of SVGFusion is to utilize a popular Text-to-Image framework to learn a continuous latent space for vector graphics. Specifically, SVGFusion comprises two key modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). The VP-VAE processes both SVG codes and their corresponding rasterizations to learn a continuous latent space, while the VS-DiT generates latent codes within this space based on the input text prompt. Building on the VP-VAE, we propose a novel rendering sequence modeling strategy which enables the learned latent space to capture the inherent creation logic of SVGs. This allows the model to generate SVGs with higher visual quality and more logical construction, while systematically avoiding occlusion in complex graphic compositions. Additionally, the scalability of SVGFusion can be continuously enhanced by adding more VS-DiT blocks. To effectively train and evaluate SVGFusion, we construct SVGX-Dataset, a large-scale, high-quality SVG dataset that addresses the scarcity of high-quality vector data. Extensive experiments demonstrate the superiority of SVGFusion over existing SVG generation methods, establishing a new framework for SVG content creation. Code, model, and data will be released at: https://ximinng.github.io/SVGFusionProject/

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube