Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Environmentally Adaptive Control Including Variance Minimization Using Stochastic Predictive Network with Parametric Bias: Application to Mobile Robots (2412.08275v1)

Published 11 Dec 2024 in cs.RO

Abstract: In this study, we propose a predictive model composed of a recurrent neural network including parametric bias and stochastic elements, and an environmentally adaptive robot control method including variance minimization using the model. Robots which have flexible bodies or whose states can only be partially observed are difficult to modelize, and their predictive models often have stochastic behaviors. In addition, the physical state of the robot and the surrounding environment change sequentially, and so the predictive model can change online. Therefore, in this study, we construct a learning-based stochastic predictive model implemented in a neural network embedded with such information from the experience of the robot, and develop a control method for the robot to avoid unstable motion with large variance while adapting to the current environment. This method is verified through a mobile robot in simulation and to the actual robot Fetch.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com