Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

TrojanWhisper: Evaluating Pre-trained LLMs to Detect and Localize Hardware Trojans (2412.07636v1)

Published 10 Dec 2024 in cs.CR and cs.AI

Abstract: Existing Hardware Trojans (HT) detection methods face several critical limitations: logic testing struggles with scalability and coverage for large designs, side-channel analysis requires golden reference chips, and formal verification methods suffer from state-space explosion. The emergence of LLMs offers a promising new direction for HT detection by leveraging their natural language understanding and reasoning capabilities. For the first time, this paper explores the potential of general-purpose LLMs in detecting various HTs inserted in Register Transfer Level (RTL) designs, including SRAM, AES, and UART modules. We propose a novel tool for this goal that systematically assesses state-of-the-art LLMs (GPT-4o, Gemini 1.5 pro, and Llama 3.1) in detecting HTs without prior fine-tuning. To address potential training data bias, the tool implements perturbation techniques, i.e., variable name obfuscation, and design restructuring, that make the cases more sophisticated for the used LLMs. Our experimental evaluation demonstrates perfect detection rates by GPT-4o and Gemini 1.5 pro in baseline scenarios (100%/100% precision/recall), with both models achieving better trigger line coverage (TLC: 0.82-0.98) than payload line coverage (PLC: 0.32-0.46). Under code perturbation, while Gemini 1.5 pro maintains perfect detection performance (100%/100%), GPT-4o (100%/85.7%) and Llama 3.1 (66.7%/85.7%) show some degradation in detection rates, and all models experience decreased accuracy in localizing both triggers and payloads. This paper validates the potential of LLM approaches for hardware security applications, highlighting areas for future improvement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.