Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Impact of Sampling Techniques and Data Leakage on XGBoost Performance in Credit Card Fraud Detection (2412.07437v1)

Published 10 Dec 2024 in cs.LG

Abstract: Credit card fraud detection remains a critical challenge in financial security, with machine learning models like XGBoost(eXtreme gradient boosting) emerging as powerful tools for identifying fraudulent transactions. However, the inherent class imbalance in credit card transaction datasets poses significant challenges for model performance. Although sampling techniques are commonly used to address this imbalance, their implementation sometimes precedes the train-test split, potentially introducing data leakage. This study presents a comparative analysis of XGBoost's performance in credit card fraud detection under three scenarios: Firstly without any imbalance handling techniques, secondly with sampling techniques applied only to the training set after the train-test split, and third with sampling techniques applied before the train-test split. We utilized a dataset from Kaggle of 284,807 credit card transactions, containing 0.172\% fraudulent cases, to evaluate these approaches. Our findings show that although sampling strategies enhance model performance, the reliability of results is greatly impacted by when they are applied. Due to a data leakage issue that frequently occurs in machine learning models during the sampling phase, XGBoost models trained on data where sampling was applied prior to the train-test split may have displayed artificially inflated performance metrics. Surprisingly, models trained with sampling techniques applied solely to the training set demonstrated significantly lower results than those with pre-split sampling, all the while preserving the integrity of the evaluation process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube