Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Cutting is All You Need: Execution of Large-Scale Quantum Neural Networks on Limited-Qubit Devices (2412.04844v1)

Published 6 Dec 2024 in quant-ph and cs.ET

Abstract: The rapid advancement in Quantum Computing (QC), particularly through Noisy-Intermediate Scale Quantum (NISQ) devices, has spurred significant interest in Quantum Machine Learning (QML) applications. Despite their potential, fully-quantum QML algorithms remain impractical due to the limitations of current NISQ devices. Hybrid quantum-classical neural networks (HQNNs) have emerged as a viable alternative, leveraging both quantum and classical computations to enhance machine learning capabilities. However, the constrained resources of NISQ devices, particularly the limited number of qubits, pose significant challenges for executing large-scale quantum circuits. This work addresses these current challenges by proposing a novel and practical methodology for quantum circuit cutting of HQNNs, allowing large quantum circuits to be executed on limited-qubit NISQ devices. Our approach not only preserves the accuracy of the original circuits but also supports the training of quantum parameters across all subcircuits, which is crucial for the learning process in HQNNs. We propose a cutting methodology for HQNNs that employs a greedy algorithm for identifying efficient cutting points, and the implementation of trainable subcircuits, all designed to maximize the utility of NISQ devices in HQNNs. The findings suggest that quantum circuit cutting is a promising technique for advancing QML on current quantum hardware, since the cut circuit achieves comparable accuracy and much lower qubit requirements than the original circuit.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube