Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decomposed Distribution Matching in Dataset Condensation (2412.04748v1)

Published 6 Dec 2024 in cs.CV

Abstract: Dataset Condensation (DC) aims to reduce deep neural networks training efforts by synthesizing a small dataset such that it will be as effective as the original large dataset. Conventionally, DC relies on a costly bi-level optimization which prohibits its practicality. Recent research formulates DC as a distribution matching problem which circumvents the costly bi-level optimization. However, this efficiency sacrifices the DC performance. To investigate this performance degradation, we decomposed the dataset distribution into content and style. Our observations indicate two major shortcomings of: 1) style discrepancy between original and condensed data, and 2) limited intra-class diversity of condensed dataset. We present a simple yet effective method to match the style information between original and condensed data, employing statistical moments of feature maps as well-established style indicators. Moreover, we enhance the intra-class diversity by maximizing the Kullback-Leibler divergence within each synthetic class, i.e., content. We demonstrate the efficacy of our method through experiments on diverse datasets of varying size and resolution, achieving improvements of up to 4.1% on CIFAR10, 4.2% on CIFAR100, 4.3% on TinyImageNet, 2.0% on ImageNet-1K, 3.3% on ImageWoof, 2.5% on ImageNette, and 5.5% in continual learning accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube