Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Socio-Emotional Response Generation: A Human Evaluation Protocol for LLM-Based Conversational Systems (2412.04492v1)

Published 26 Nov 2024 in cs.CL, cs.AI, cs.HC, and cs.SI

Abstract: Conversational systems are now capable of producing impressive and generally relevant responses. However, we have no visibility nor control of the socio-emotional strategies behind state-of-the-art LLMs, which poses a problem in terms of their transparency and thus their trustworthiness for critical applications. Another issue is that current automated metrics are not able to properly evaluate the quality of generated responses beyond the dataset's ground truth. In this paper, we propose a neural architecture that includes an intermediate step in planning socio-emotional strategies before response generation. We compare the performance of open-source baseline LLMs to the outputs of these same models augmented with our planning module. We also contrast the outputs obtained from automated metrics and evaluation results provided by human annotators. We describe a novel evaluation protocol that includes a coarse-grained consistency evaluation, as well as a finer-grained annotation of the responses on various social and emotional criteria. Our study shows that predicting a sequence of expected strategy labels and using this sequence to generate a response yields better results than a direct end-to-end generation scheme. It also highlights the divergences and the limits of current evaluation metrics for generated content. The code for the annotation platform and the annotated data are made publicly available for the evaluation of future models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.