Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Reproving Friedlander-Filonov inequality with the de Rham complex (2412.03369v2)

Published 4 Dec 2024 in math.SP, math.AP, and math.DG

Abstract: Inequalities between Dirichlet and Neumann eigenvalues of the Laplacian and of other differential operators have been intensively studied in the past decades. The aim of this paper is to introduce differential forms and the de Rham complex in the study of such inequalities. We show how differential forms lie hidden at the heart of the work of Rohleder on inequalities between Dirichlet and Neumann eigenvalues for the Laplacian on planar domains. Moreover, we extend the ideas of Rohleder to a new proof of Friedlander's inequality for any bounded Lipschitz domain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com