Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Kernel-based Koopman approximants for control: Flexible sampling, error analysis, and stability (2412.02811v1)

Published 3 Dec 2024 in math.OC, cs.SY, and eess.SY

Abstract: Data-driven techniques for analysis, modeling, and control of complex dynamical systems are on the uptake. Koopman theory provides the theoretical foundation for the extremely popular kernel extended dynamic mode decomposition (kEDMD). In this work we propose a novel kEDMD scheme to approximate nonlinear control systems accompanied by an in-depth error analysis. The main features of the method are flexible sampling, regularization-based robustness, and an adroit decomposition into micro and macro grids. In addition, we prove proportionality, i.e., explicit dependence on the distance to the (controlled) equilibrium, of the derived uniform bounds on the full approximation error. Leveraging this key property, we rigorously show that asymptotic stability of the data-driven surrogate (control) system implies asymptotic stability of the original (control) system and vice versa.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com