Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Transformer-Based Auxiliary Loss for Face Recognition Across Age Variations (2412.02198v2)

Published 3 Dec 2024 in cs.CV

Abstract: Aging presents a significant challenge in face recognition, as changes in skin texture and tone can alter facial features over time, making it particularly difficult to compare images of the same individual taken years apart, such as in long-term identification scenarios. Transformer networks have the strength to preserve sequential spatial relationships caused by aging effect. This paper presents a technique for loss evaluation that uses a transformer network as an additive loss in the face recognition domain. The standard metric loss function typically takes the final embedding of the main CNN backbone as its input. Here, we employ a transformer-metric loss, a combined approach that integrates both transformer-loss and metric-loss. This research intends to analyze the transformer behavior on the convolution output when the CNN outcome is arranged in a sequential vector. These sequential vectors have the potential to overcome the texture or regional structure referred to as wrinkles or sagging skin affected by aging. The transformer encoder takes input from the contextual vectors obtained from the final convolution layer of the network. The learned features can be more age-invariant, complementing the discriminative power of the standard metric loss embedding. With this technique, we use transformer loss with various base metric-loss functions to evaluate the effect of the combined loss functions. We observe that such a configuration allows the network to achieve SoTA results in LFW and age-variant datasets (CA-LFW and AgeDB). This research expands the role of transformers in the machine vision domain and opens new possibilities for exploring transformers as a loss function.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube