Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

A Semi-Lagrangian Adaptive-Rank (SLAR) Method for Linear Advection and Nonlinear Vlasov-Poisson System (2411.17963v1)

Published 27 Nov 2024 in math.NA and cs.NA

Abstract: High-order semi-Lagrangian methods for kinetic equations have been under rapid development in the past few decades. In this work, we propose a semi-Lagrangian adaptive rank (SLAR) integrator in the finite difference framework for linear advection and nonlinear Vlasov-Poisson systems without dimensional splitting. The proposed method leverages the semi-Lagrangian approach to allow for significantly larger time steps while also exploiting the low-rank structure of the solution. This is achieved through cross approximation of matrices, also referred to as CUR or pseudo-skeleton approximation, where representative columns and rows are selected using specific strategies. To maintain numerical stability and ensure local mass conservation, we apply singular value truncation and a mass-conservative projection following the cross approximation of the updated solution. The computational complexity of our method scales linearly with the mesh size $N$ per dimension, compared to the $\mathcal{O}(N2)$ complexity of traditional full-rank methods per time step. The algorithm is extended to handle nonlinear Vlasov-Poisson systems using a Runge-Kutta exponential integrator. Moreover, we evolve the macroscopic conservation laws for charge densities implicitly, enabling the use of large time steps that align with the semi-Lagrangian solver. We also perform a mass-conservative correction to ensure that the adaptive rank solution preserves macroscopic charge density conservation. To validate the efficiency and effectiveness of our method, we conduct a series of benchmark tests on both linear advection and nonlinear Vlasov-Poisson systems. The propose algorithm will have the potential in overcoming the curse of dimensionality for beyond 2D high dimensional problems, which is the subject of our future work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.