Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An explicit semi-Lagrangian, spectral method for solution of Lagrangian transport equations in Eulerian-Lagrangian formulations (1910.06476v1)

Published 15 Oct 2019 in math.NA, cs.NA, and physics.flu-dyn

Abstract: An explicit high order semi-Lagrangian method is developed for solving Lagrangian transport equations in Eulerian-Lagrangian formulations. To ensure a semi-Lagrangian approximation that is consistent with an explicit Eulerian, discontinuous spectral element method (DSEM) discretization used for the Eulerian formulation, Lagrangian particles are seeded at Gauss quadrature collocation nodes within an element. The particles are integrated explicitly in time to obtain an advected polynomial solution at the advected Gauss quadrature locations. This approximation is mapped back in a semi-Lagrangian fashion to the Gauss quadrature points through a least squares fit using constraints for element boundary values and optional constraints for mass and energy preservation. An explicit time integration is used for the semi-Lagrangian approximation that is consistent with the grid based DSEM solver, which ensures that particles seeded at the Gauss quadrature points do not leave the element's bounds. The method is hence local and parallel and facilitates the solution of the Lagrangian formulation without the grid complexity, and parallelization challenges of a particle solver in particle-mesh methods. Numerical tests with one and two dimensional advection equation are carried out. The method converges exponentially. The use of mass and energy constraints can improve accuracy depending on the accuracy of the time integration.

Citations (6)

Summary

We haven't generated a summary for this paper yet.