Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Importance-Based Token Merging for Efficient Image and Video Generation (2411.16720v2)

Published 23 Nov 2024 in cs.CV

Abstract: Token merging can effectively accelerate various vision systems by processing groups of similar tokens only once and sharing the results across them. However, existing token grouping methods are often ad hoc and random, disregarding the actual content of the samples. We show that preserving high-information tokens during merging - those essential for semantic fidelity and structural details - significantly improves sample quality, producing finer details and more coherent, realistic generations. Despite being simple and intuitive, this approach remains underexplored. To do so, we propose an importance-based token merging method that prioritizes the most critical tokens in computational resource allocation, leveraging readily available importance scores, such as those from classifier-free guidance in diffusion models. Experiments show that our approach significantly outperforms baseline methods across multiple applications, including text-to-image synthesis, multi-view image generation, and video generation with various model architectures such as Stable Diffusion, Zero123++, AnimateDiff, or PixArt-$\alpha$.

Summary

We haven't generated a summary for this paper yet.