Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reward Fine-Tuning Two-Step Diffusion Models via Learning Differentiable Latent-Space Surrogate Reward (2411.15247v3)

Published 22 Nov 2024 in cs.LG

Abstract: Recent research has shown that fine-tuning diffusion models (DMs) with arbitrary rewards, including non-differentiable ones, is feasible with reinforcement learning (RL) techniques, enabling flexible model alignment. However, applying existing RL methods to step-distilled DMs is challenging for ultra-fast ($\le2$-step) image generation. Our analysis suggests several limitations of policy-based RL methods such as PPO or DPO toward this goal. Based on the insights, we propose fine-tuning DMs with learned differentiable surrogate rewards. Our method, named LaSRO, learns surrogate reward models in the latent space of SDXL to convert arbitrary rewards into differentiable ones for effective reward gradient guidance. LaSRO leverages pre-trained latent DMs for reward modeling and tailors reward optimization for $\le2$-step image generation with efficient off-policy exploration. LaSRO is effective and stable for improving ultra-fast image generation with different reward objectives, outperforming popular RL methods including DDPO and Diffusion-DPO. We further show LaSRO's connection to value-based RL, providing theoretical insights. See our webpage \href{https://sites.google.com/view/lasro}{here}.

Summary

We haven't generated a summary for this paper yet.