Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models (2411.14832v1)

Published 22 Nov 2024 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: The fast advancement of Large Vision-LLMs (LVLMs) has shown immense potential. These models are increasingly capable of tackling abstract visual tasks. Geometric structures, particularly graphs with their inherent flexibility and complexity, serve as an excellent benchmark for evaluating these models' predictive capabilities. While human observers can readily identify subtle visual details and perform accurate analyses, our investigation reveals that state-of-the-art LVLMs exhibit consistent limitations in specific visual graph scenarios, especially when confronted with stylistic variations. In response to these challenges, we introduce VisGraphVar (Visual Graph Variability), a customizable benchmark generator able to produce graph images for seven distinct task categories (detection, classification, segmentation, pattern recognition, link prediction, reasoning, matching), designed to systematically evaluate the strengths and limitations of individual LVLMs. We use VisGraphVar to produce 990 graph images and evaluate six LVLMs, employing two distinct prompting strategies, namely zero-shot and chain-of-thought. The findings demonstrate that variations in visual attributes of images (e.g., node labeling and layout) and the deliberate inclusion of visual imperfections, such as overlapping nodes, significantly affect model performance. This research emphasizes the importance of a comprehensive evaluation across graph-related tasks, extending beyond reasoning alone. VisGraphVar offers valuable insights to guide the development of more reliable and robust systems capable of performing advanced visual graph analysis.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.