Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Principles of Visual Tokens for Efficient Video Understanding (2411.13626v2)

Published 20 Nov 2024 in cs.CV

Abstract: Video understanding has made huge strides in recent years, relying largely on the power of transformers. As this architecture is notoriously expensive and video data is highly redundant, research into improving efficiency has become particularly relevant. Some creative solutions include token selection and merging. While most methods succeed in reducing the cost of the model and maintaining accuracy, an interesting pattern arises: most methods do not outperform the baseline of randomly discarding tokens. In this paper we take a closer look at this phenomenon and observe 5 principles of the nature of visual tokens. For example, we observe that the value of tokens follows a clear Pareto-distribution where most tokens have remarkably low value, and just a few carry most of the perceptual information. We build on these and further insights to propose a lightweight video model, LITE, that can select a small number of tokens effectively, outperforming state-of-the-art and existing baselines across datasets (Kinetics-400 and Something-Something-V2) in the challenging trade-off of computation (GFLOPs) vs accuracy. Experiments also show that LITE generalizes across datasets and even other tasks without the need for retraining.

Summary

We haven't generated a summary for this paper yet.