Gadgetless Lifting Beats Round Elimination: Improved Lower Bounds for Pointer Chasing (2411.10996v1)
Abstract: We prove an \Omega(n/k+k) communication lower bound on (k-1)-round distributional complexity of the k-step pointer chasing problem under uniform input distribution, improving the \Omega(n/k - k log n) lower bound due to Yehudayoff (Combinatorics Probability and Computing, 2020). Our lower bound almost matches the upper bound of O(n/k + k) communication by Nisan and Wigderson (STOC 91). As part of our approach, we put forth gadgetless lifting, a new framework that lifts lower bounds for a family of restricted protocols into lower bounds for general protocols. A key step in gadgetless lifting is choosing the appropriate definition of restricted protocols. In this paper, our definition of restricted protocols is inspired by the structure-vs-pseudorandomness decomposition by G\"o\"os, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24). Previously, round-communication trade-offs were mainly obtained by round elimination and information complexity. Both methods have some barriers in some situations, and we believe gadgetless lifting could potentially address these barriers.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.