Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Jacobi convolution series for Petrov-Galerkin scheme and general fractional calculus of arbitrary order over finite interval (2411.08080v2)

Published 12 Nov 2024 in math.NA, cs.NA, math-ph, math.AP, and math.MP

Abstract: Recently, general fractional calculus was introduced by Kochubei (2011) and Luchko (2021) as a further generalisation of fractional calculus, where the derivative and integral operator admits arbitrary kernel. Such a formalism will have many applications in physics and engineering, since the kernel is no longer restricted. We first extend the work of Al-Refai and Luchko (2023) on finite interval to arbitrary orders. Followed by, developing an efficient Petrov-Galerkin scheme by introducing Jacobi convolution series as basis functions. A notable property of this basis function, the general fractional derivative of Jacobi convolution series is a shifted Jacobi polynomial. Thus, with a suitable test function it results in diagonal stiffness matrix, hence, the efficiency in implementation. Furthermore, our method is constructed for any arbitrary kernel including that of fractional operator, since, its a special case of general fractional operator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.