Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

FuzzRisk: Online Collision Risk Estimation for Autonomous Vehicles based on Depth-Aware Object Detection via Fuzzy Inference (2411.08060v2)

Published 9 Nov 2024 in cs.RO, cs.AI, and cs.CV

Abstract: This paper presents a novel monitoring framework that infers the level of collision risk for autonomous vehicles (AVs) based on their object detection performance. The framework takes two sets of predictions from different algorithms and associates their inconsistencies with the collision risk via fuzzy inference. The first set of predictions is obtained by retrieving safety-critical 2.5D objects from a depth map, and the second set comes from the ordinary AV's 3D object detector. We experimentally validate that, based on Intersection-over-Union (IoU) and a depth discrepancy measure, the inconsistencies between the two sets of predictions strongly correlate to the error of the 3D object detector against ground truths. This correlation allows us to construct a fuzzy inference system and map the inconsistency measures to an AV collision risk indicator. In particular, we optimize the fuzzy inference system towards an existing offline metric that matches AV collision rates well. Lastly, we validate our monitor's capability to produce relevant risk estimates with the large-scale nuScenes dataset and demonstrate that it can safeguard an AV in closed-loop simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.