Lean and Mean Adaptive Optimization via Subset-Norm and Subspace-Momentum with Convergence Guarantees (2411.07120v2)
Abstract: We introduce two complementary techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) through step-size sharing. Subset-Norm (SN) reduces AdaGrad's memory footprint from $O(d)$ to $O(\sqrt{d})$, where $d$ is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian noise, we show a noise-adapted high-probability convergence guarantee with improved dimensional dependence of SN over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state's memory footprint by restricting momentum to a low-dimensional subspace while performing SGD in the orthogonal complement. We prove a high-probability convergence result for Subspace-Momentum under standard assumptions. Empirical evaluation on pre-training and fine-tuning LLMs demonstrates the effectiveness of our methods. For instance, combining Subset-Norm with Subspace-Momentum achieves Adam's validation perplexity for LLaMA 1B in approximately half the training tokens (6.8B vs 13.1B) while reducing Adam's optimizer-states memory footprint by more than 80\% with minimal additional hyperparameter tuning.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.