Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Cancer-Answer: Empowering Cancer Care with Advanced Large Language Models (2411.06946v2)

Published 11 Nov 2024 in cs.CL

Abstract: Gastrointestinal (GI) tract cancers account for a substantial portion of the global cancer burden, where early diagnosis is critical for improved management and patient outcomes. The complex aetiologies and overlapping symptoms across GI cancers often delay diagnosis, leading to suboptimal treatment strategies. Cancer-related queries are crucial for timely diagnosis, treatment, and patient education, as access to accurate, comprehensive information can significantly influence outcomes. However, the complexity of cancer as a disease, combined with the vast amount of available data, makes it difficult for clinicians and patients to quickly find precise answers. To address these challenges, we leverage LLMs such as GPT-3.5 Turbo to generate accurate, contextually relevant responses to cancer-related queries. Pre-trained with medical data, these models provide timely, actionable insights that support informed decision-making in cancer diagnosis and care, ultimately improving patient outcomes. We calculate two metrics: A1 (which represents the fraction of entities present in the model-generated answer compared to the gold standard) and A2 (which represents the linguistic correctness and meaningfulness of the model-generated answer with respect to the gold standard), achieving maximum values of 0.546 and 0.881, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.