Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Layout Control and Semantic Guidance with Attention Loss Backward for T2I Diffusion Model (2411.06692v1)

Published 11 Nov 2024 in cs.CV

Abstract: Controllable image generation has always been one of the core demands in image generation, aiming to create images that are both creative and logical while satisfying additional specified conditions. In the post-AIGC era, controllable generation relies on diffusion models and is accomplished by maintaining certain components or introducing inference interferences. This paper addresses key challenges in controllable generation: 1. mismatched object attributes during generation and poor prompt-following effects; 2. inadequate completion of controllable layouts. We propose a train-free method based on attention loss backward, cleverly controlling the cross attention map. By utilizing external conditions such as prompts that can reasonably map onto the attention map, we can control image generation without any training or fine-tuning. This method addresses issues like attribute mismatch and poor prompt-following while introducing explicit layout constraints for controllable image generation. Our approach has achieved excellent practical applications in production, and we hope it can serve as an inspiring technical report in this field.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)