Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Beyond Correlation: Evaluating Multimedia Quality Models with the Constrained Concordance Index (2411.05794v1)

Published 24 Oct 2024 in cs.MM, cs.SD, eess.AS, and eess.IV

Abstract: This study investigates the evaluation of multimedia quality models, focusing on the inherent uncertainties in subjective Mean Opinion Score (MOS) ratings due to factors like rater inconsistency and bias. Traditional statistical measures such as Pearson's Correlation Coefficient (PCC), Spearman's Rank Correlation Coefficient (SRCC), and Kendall's Tau (KTAU) often fail to account for these uncertainties, leading to inaccuracies in model performance assessment. We introduce the Constrained Concordance Index (CCI), a novel metric designed to overcome the limitations of existing metrics by considering the statistical significance of MOS differences and excluding comparisons where MOS confidence intervals overlap. Through comprehensive experiments across various domains including speech and image quality assessment, we demonstrate that CCI provides a more robust and accurate evaluation of instrumental quality models, especially in scenarios of low sample sizes, rater group variability, and restriction of range. Our findings suggest that incorporating rater subjectivity and focusing on statistically significant pairs can significantly enhance the evaluation framework for multimedia quality prediction models. This work not only sheds light on the overlooked aspects of subjective rating uncertainties but also proposes a methodological advancement for more reliable and accurate quality model evaluation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.